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Reachability

Define Reach(A, q) ⊆ Q as the set of states reachable in A from q.

Define Reach(A) ≡ Reach(A, q0).

Exercise

Describe the algorithm for computing Reach(A).

Deadlock or a stuck state is a state q ∈ Q which has no outgoing
transitions i.e ∀a. δ(q, a) = ∅.
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Deadlock Example
Assuming unicast synchronisation:

p0

p1

p2

p3

lock(L1)! lock(L2)!

unlock(L2)!unlock(L1)!

q0

q1

q2

q3

lock(L2)! lock(L1)!

unlock(L1)!unlock(L2)!

free1

locked1

lock(L1)? unlock(L1)?

free2

locked2

lock(L2)? unlock(L2)?

locked1

locked2

q1

p1

Exercise: What is an algorithm to detect deadlock?
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Safety Properties

A safety property is an assertion that bad things do not happen. In
other words, given some set of states Bad ⊆ Q, we want to check
that:

Bad ∩ Reach(A) = ∅

Exercise

Give an algorithm to check a safety property.
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Observations
Is use after free a safety property?

void foo() {

int x, a;

int *p = malloc(sizeof(int));

for (x = 10; x > 0; x--) {

a = *p;

if (x <= 1) {

free(p);

}

}

}

`0 `1

`2`7

`3

`4

`5

`6

malloc

use

freeOK Free Bad
free use

∗
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Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

13



Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume

{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

14



Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

15



Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }
16



Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Traces

Definition

A trace, also called a behaviour, is the sequence of labels
corresponding to a run. For Kripke structures it is necessarily
infinite in length.

Define Traces(A) to be all possible infinite traces from q0 in A.

Definition

A linear time property is a set of traces, i.e. a subset of (2P)ω. We
say a Kripke structure A satisfies a property P iff:

Traces(A) ⊆ P
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LTL

Linear temporal logic (LTL) is a logic designed to describe linear
time properties.

Linear temporal logic syntax

We have normal propositional operators:

p ∈ P is an LTL formula.

If ϕ,ψ are LTL formulae, then ϕ ∧ ψ is an LTL formula.

If ϕ is an LTL formula, ¬ϕ is an LTL formula.

We also have modal or temporal operators:

If ϕ is an LTL formula, then X ϕ is an LTL formula.

If ϕ, ψ are LTL formulae, then ϕ UNTIL ψ is an LTL formula.
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LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
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LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
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X¬• X• X• X• X¬• ??
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LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a trace. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are traces. For atomic propositions, we just
look at the first state:

σ |= p ⇔ p ∈ σ0
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ
σ |= X ϕ ⇔ σ|1 |= ϕ
σ |= ϕ UNTIL ψ ⇔ There exists an i such that σ|i |= ψ

and for all j < i , σ|j |= ϕ

We say A |= ϕ iff ∀σ ∈ Traces(A). σ |= ϕ.
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Derived Operators

The operator F ϕ (“finally” or “eventually”) says that ϕ will be
true at some point.

The operator G ϕ (“globally” or “always”) says that ϕ is always
true.

Exercise

Give the semantics of F and G.

Define F and G in terms of other operators.
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More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).
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Possible Futures

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

We can see that it is always possible for a run to move to the
terminated state. How do we express this in LTL?

We can’t! — it
is a branching time property.
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Branching Time

Definition

The computation tree of a Kripke structure A, written Tree(A), is
an infinite tree of Kripke structure states, where q0 is the root and
a state q′ is a child of q if q′ ∈ δ(q).

A path t1t2t3 . . . is a (infinite) sequence of computation trees such
that tn+1 is the child of tn. Define Paths(t) to be the set of all
paths starting at t.

Exercise

Draw the CT for the process example.
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CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

49



Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

50



Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).
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CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).
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CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)

t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P

t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ

t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P

ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ

ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ

ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ
and for all j < i , ρ|j |= ϕ
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CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ
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CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?
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CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?
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CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?
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CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?
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Simplifying

CTL* is very expressive but very complicated.

It’s also extremely hard to model check, which we’ll get to later.

CTL* to CTL

Keep state formulae the same:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

But we force path formulae to go straight back to state formulae
immediately with a temporal operator:

Given a SF P then XP is a PF.

Given SFs P and Q, P UNTIL Q is a PF.
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Examples

Which of the following CTL* formulae are CTL formulae?

a UNTIL (b UNTIL c)

A (a UNTIL c)

X X a

X A a

A (a UNTIL (b UNTIL c))

A E (a UNTIL b)

E X a

X E a
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Non-mutual CTL Syntax

Simpler CTL Syntax

A CTL formula is defined as follows:

All p ∈ P are formulae.

Given formulae P and Q, ¬P is a formula and P ∧ Q is a
formula.

Given a formula P, EX P and AX P are formulae.

Given formulae P and Q, E(P UNTIL Q) and
A(P UNTIL Q) are formulae.
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Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)

t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P
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Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P

t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P
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Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P

t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P
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Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P

t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:
ρi |= Q and ∀j < i . ρj |= P

t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:
ρi |= Q and ∀j < i . ρj |= P
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Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P

t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:
ρi |= Q and ∀j < i . ρj |= P
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Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P
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Derived Operators

Define EF•:

E(True UNTIL •)
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Derived Operators

Define EF•:

E(True UNTIL •)
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Derived Operators

Define EG•:

¬A(True UNTIL ¬•)
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Derived Operators

Define EG•:

¬A(True UNTIL ¬•)
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Derived Operators

Define AF•:

A(True UNTIL •)
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Derived Operators

Define AF•:

A(True UNTIL •)
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Derived Operators

Define AG•:

¬EF ¬•
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Derived Operators

Define AG•:

¬EF ¬•
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