
Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

COMP

3

9

1 5

3
Algorithmic Verification

<latexit sha1_base64="P4jUUJHo6g1yopyZBD74hiv3LdI=">AAAIZHicjVRbb9NIFD6kXEKWW6l4QEhooCBalIa4JYJqVcTSF14QRaIFqanQ2D5xRpnYZjxpG6L8Cn7d/oH9EfvEmWPnRgy7juw5/ubMd75zif1Uq8w2m39fqKxcvHT5SvVq7Y9r12/cvLV6+yhLBibAwyDRifnsywy1ivHQKqvxc2pQ9n2Nn/zevtv/dIomU0n80Q5TPOnLKFYdFUhL0JfVyve2j5GKR1b1vqUqsAOD41o7TkI8zqy0WO8orfd8PcAH2826ULGySuoTsfHV2xSjtsVz63fyNeuM9t+/OxiPx38uMxgMmUD6ySkKo6KuFUln76tHVHqnhGqnnOdUJRotU/mok7OfqXZLqHbLqSKDGJeJ0ruOqSw/r5xpiJqkMNWMhOW0Skha5STBUMZzeTmKVl0GAaZWxRGX6fzXdQqNPMubgmGEXIgydGeGuqoXqDeH7paiM4bWHNqa8Z5vFikJacWGV9/yGtNWkMq/dJQYZbt9FYgjNNMJZO0Yhwvz9+XWerPR5EssG15hrENxHSSrlTa0IYQEAhhAHxBisGRrkJDR7xg8aEJK2AmMCDNkKd5HGEONzg7IC8lDEtqjZ0RvxwUa07vjzPh0QFE03YZOCnhc+IRkdxjNVxdfzPn+KsaIuZ3GIa1+wdkn1EKX0P86N/H8v+dcTpYUvuRcFOlMGXFZBgsZdWjV9G5Jv3sOyRPJCumUISsgTBOaIy6GoTWvq8u8y3WW7Idk/S4Xd6oH3zj+xGeCaVp9ZjIUzeU9YE15rhLqdCal96yI7mrv8op4x50yhJ3Rvuu00zBhzqOMyGsLXrH3K9gj1OmVFNdV8gnjj+l28Xo8BYJ3cIFdMCKpFm7f5767majRvfyLaT+cVjPjPFz9keJ70IAW2f1p5IwrH5Bnh+5FBX3OVdHq5n6Zz2lxWZ7R0/VYsJ3MacgonoB97lfM/RAcyXkgc7jpzKvfWMoI4ZS7O2SdlnuC8Iw8M54ZzTmNWK/intf5H6JoR9NOxJ0dwgPKuUkdmuXsVM9nmnKlU45mp3WY/OeQJ6oLQtyd6SB7vtaLyvO6WZ7dfM4Rzum5B4/o7dFvlEw8c0SyJUlZyioM+yZFrfMTuSJTeM5mpgbuW+f9/GVbNo62G97zxvMP2+uv3xRfvSrcg4ewQfPyAl7DWziAQwgq/66Ilc2Vp1f+qV6rrlXv5K6VC8WZNVi4qvd/AB3w9Tw=</latexit>

Temporal Logics

Dr. Liam O’Connor
CSE, UNSW (for now)

Term 1 2020

1

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Reachability

Define Reach(A, q) ⊆ Q as the set of states reachable in A from q.

Define Reach(A) ≡ Reach(A, q0).

Exercise

Describe the algorithm for computing Reach(A).

Deadlock or a stuck state is a state q ∈ Q which has no outgoing
transitions i.e ∀a. δ(q, a) = ∅.

2

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Reachability

Define Reach(A, q) ⊆ Q as the set of states reachable in A from q.

Define Reach(A) ≡ Reach(A, q0).

Exercise

Describe the algorithm for computing Reach(A).

Deadlock or a stuck state is a state q ∈ Q which has no outgoing
transitions i.e ∀a. δ(q, a) = ∅.

3

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Reachability

Define Reach(A, q) ⊆ Q as the set of states reachable in A from q.

Define Reach(A) ≡ Reach(A, q0).

Exercise

Describe the algorithm for computing Reach(A).

Deadlock or a stuck state is a state q ∈ Q which has no outgoing
transitions i.e ∀a. δ(q, a) = ∅.

4

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Deadlock Example
Assuming unicast synchronisation:

p0

p1

p2

p3

lock(L1)! lock(L2)!

unlock(L2)!unlock(L1)!

q0

q1

q2

q3

lock(L2)! lock(L1)!

unlock(L1)!unlock(L2)!

free1

locked1

lock(L1)? unlock(L1)?

free2

locked2

lock(L2)? unlock(L2)?

locked1

locked2

q1

p1

Exercise: What is an algorithm to detect deadlock?

5

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Deadlock Example
Assuming unicast synchronisation:

p0

p1

p2

p3

lock(L1)! lock(L2)!

unlock(L2)!unlock(L1)!

q0

q1

q2

q3

lock(L2)! lock(L1)!

unlock(L1)!unlock(L2)!

free1

locked1

lock(L1)? unlock(L1)?

free2

locked2

lock(L2)? unlock(L2)?

locked1

locked2

q1

p1

Exercise: What is an algorithm to detect deadlock?

6

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Deadlock Example
Assuming unicast synchronisation:

p0

p1

p2

p3

lock(L1)! lock(L2)!

unlock(L2)!unlock(L1)!

q0

q1

q2

q3

lock(L2)! lock(L1)!

unlock(L1)!unlock(L2)!

free1

locked1

lock(L1)? unlock(L1)?

free2

locked2

lock(L2)? unlock(L2)?

locked1

locked2

q1

p1

Exercise: What is an algorithm to detect deadlock?
7

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Safety Properties

A safety property is an assertion that bad things do not happen. In
other words, given some set of states Bad ⊆ Q, we want to check
that:

Bad ∩ Reach(A) = ∅

Exercise

Give an algorithm to check a safety property.

8

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Safety Properties

A safety property is an assertion that bad things do not happen. In
other words, given some set of states Bad ⊆ Q, we want to check
that:

Bad ∩ Reach(A) = ∅

Exercise

Give an algorithm to check a safety property.

9

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Observations
Is use after free a safety property?

void foo() {

int x, a;

int *p = malloc(sizeof(int));

for (x = 10; x > 0; x--) {

a = *p;

if (x <= 1) {

free(p);

}

}

}

`0 `1

`2`7

`3

`4

`5

`6

malloc

use

freeOK Free Bad
free use

∗

10

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Observations
Is use after free a safety property?

void foo() {

int x, a;

int *p = malloc(sizeof(int));

for (x = 10; x > 0; x--) {

a = *p;

if (x <= 1) {

free(p);

}

}

}

`0 `1

`2`7

`3

`4

`5

`6

malloc

use

free

OK Free Bad
free use

∗

11

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Observations
Is use after free a safety property?

void foo() {

int x, a;

int *p = malloc(sizeof(int));

for (x = 10; x > 0; x--) {

a = *p;

if (x <= 1) {

free(p);

}

}

}

`0 `1

`2`7

`3

`4

`5

`6

malloc

use

freeOK Free Bad
free use

∗

12

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

13

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume

{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

14

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

15

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Kripke Structures
Definition

A labelled automaton is a FA (Q, q0,Σ, δ,F , L) with an additional
labelling function L : Q → 2P , where P is our atomic propositions.
A Kripke structure is a type of labelled automaton where |Σ| = 1,
F = Q. Equivalently, we don’t have a notion of actions or final
states, and δ : Q → 2Q . We also require that for any q, δ(q) 6= ∅.

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }
16

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Traces

Definition

A trace, also called a behaviour, is the sequence of labels
corresponding to a run. For Kripke structures it is necessarily
infinite in length.

Define Traces(A) to be all possible infinite traces from q0 in A.

Definition

A linear time property is a set of traces, i.e. a subset of (2P)ω. We
say a Kripke structure A satisfies a property P iff:

Traces(A) ⊆ P

17

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL

Linear temporal logic (LTL) is a logic designed to describe linear
time properties.

Linear temporal logic syntax

We have normal propositional operators:

p ∈ P is an LTL formula.

If ϕ,ψ are LTL formulae, then ϕ ∧ ψ is an LTL formula.

If ϕ is an LTL formula, ¬ϕ is an LTL formula.

We also have modal or temporal operators:

If ϕ is an LTL formula, then X ϕ is an LTL formula.

If ϕ, ψ are LTL formulae, then ϕ UNTIL ψ is an LTL formula.

18

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL

Linear temporal logic (LTL) is a logic designed to describe linear
time properties.

Linear temporal logic syntax

We have normal propositional operators:

p ∈ P is an LTL formula.

If ϕ,ψ are LTL formulae, then ϕ ∧ ψ is an LTL formula.

If ϕ is an LTL formula, ¬ϕ is an LTL formula.

We also have modal or temporal operators:

If ϕ is an LTL formula, then X ϕ is an LTL formula.

If ϕ, ψ are LTL formulae, then ϕ UNTIL ψ is an LTL formula.

19

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}

20

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•

21

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•

X¬• X• X• X• X¬• ??

22

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

23

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

24

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

25

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

26

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

27

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

28

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics in Pictures

σ

∅ {•} {•} {•} {•} {•}
¬•,¬• ¬•,• •,¬• •,¬• •,¬• ¬•,•
¬(φU ψ) φU ψ φU ψ φU ψ φU ψ φU ψ

29

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a trace. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are traces. For atomic propositions, we just
look at the first state:

σ |= p ⇔ p ∈ σ0
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ
σ |= X ϕ ⇔ σ|1 |= ϕ
σ |= ϕ UNTIL ψ ⇔ There exists an i such that σ|i |= ψ

and for all j < i , σ|j |= ϕ

We say A |= ϕ iff ∀σ ∈ Traces(A). σ |= ϕ.

30

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a trace. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are traces. For atomic propositions, we just
look at the first state:

σ |= p ⇔ p ∈ σ0

σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ
σ |= X ϕ ⇔ σ|1 |= ϕ
σ |= ϕ UNTIL ψ ⇔ There exists an i such that σ|i |= ψ

and for all j < i , σ|j |= ϕ

We say A |= ϕ iff ∀σ ∈ Traces(A). σ |= ϕ.

31

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a trace. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are traces. For atomic propositions, we just
look at the first state:

σ |= p ⇔ p ∈ σ0
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ

σ |= X ϕ ⇔ σ|1 |= ϕ
σ |= ϕ UNTIL ψ ⇔ There exists an i such that σ|i |= ψ

and for all j < i , σ|j |= ϕ

We say A |= ϕ iff ∀σ ∈ Traces(A). σ |= ϕ.

32

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a trace. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are traces. For atomic propositions, we just
look at the first state:

σ |= p ⇔ p ∈ σ0
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ
σ |= X ϕ ⇔ σ|1 |= ϕ

σ |= ϕ UNTIL ψ ⇔ There exists an i such that σ|i |= ψ
and for all j < i , σ|j |= ϕ

We say A |= ϕ iff ∀σ ∈ Traces(A). σ |= ϕ.

33

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a trace. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are traces. For atomic propositions, we just
look at the first state:

σ |= p ⇔ p ∈ σ0
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ
σ |= X ϕ ⇔ σ|1 |= ϕ
σ |= ϕ UNTIL ψ ⇔ There exists an i such that σ|i |= ψ

and for all j < i , σ|j |= ϕ

We say A |= ϕ iff ∀σ ∈ Traces(A). σ |= ϕ.
34

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

The operator F ϕ (“finally” or “eventually”) says that ϕ will be
true at some point.

The operator G ϕ (“globally” or “always”) says that ϕ is always
true.

Exercise

Give the semantics of F and G.

Define F and G in terms of other operators.

35

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

36

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

37

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

38

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

39

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

40

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

41

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

42

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

More Exercises

Let ρ be this trace:

• • • •• •• •• · · ·

ρ |= •?

ρ |= •?

ρ |= X •?

ρ |= F •?

ρ|3 |= F (• ∧ ¬•)?

ρ |= FG (• ∧•)?

ρ |= G (• UNTIL •)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).

43

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Possible Futures

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

We can see that it is always possible for a run to move to the
terminated state. How do we express this in LTL?

We can’t! — it
is a branching time property.

44

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Possible Futures

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
{ stopped }

{ started, running }

{ terminated }

{ suspended, started }

We can see that it is always possible for a run to move to the
terminated state. How do we express this in LTL? We can’t! — it
is a branching time property.

45

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Branching Time

Definition

The computation tree of a Kripke structure A, written Tree(A), is
an infinite tree of Kripke structure states, where q0 is the root and
a state q′ is a child of q if q′ ∈ δ(q).

A path t1t2t3 . . . is a (infinite) sequence of computation trees such
that tn+1 is the child of tn. Define Paths(t) to be the set of all
paths starting at t.

Exercise

Draw the CT for the process example.

46

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Branching Time

Definition

The computation tree of a Kripke structure A, written Tree(A), is
an infinite tree of Kripke structure states, where q0 is the root and
a state q′ is a child of q if q′ ∈ δ(q).
A path t1t2t3 . . . is a (infinite) sequence of computation trees such
that tn+1 is the child of tn. Define Paths(t) to be the set of all
paths starting at t.

Exercise

Draw the CT for the process example.

47

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Branching Time

Definition

The computation tree of a Kripke structure A, written Tree(A), is
an infinite tree of Kripke structure states, where q0 is the root and
a state q′ is a child of q if q′ ∈ δ(q).
A path t1t2t3 . . . is a (infinite) sequence of computation trees such
that tn+1 is the child of tn. Define Paths(t) to be the set of all
paths starting at t.

Exercise

Draw the CT for the process example.

48

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

49

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

50

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

51

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

52

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Syntax

Definition

We define two types of formulae, state formulae and path
formulae, named based on their models.
A state formula (SF) is defined as follows:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

A path formula (PF) is defined much like LTL:

If P is a SF, then P is a PF.

Given PFs ϕ and ψ, ¬ϕ is a PF and ϕ ∧ ψ is a PF.

Given a PF ϕ then Xϕ is a PF.

Given PFs ϕ and ψ, ϕ UNTIL ψ is a PF.

Initially, we start with state formulae (SFs).

53

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)

t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

54

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P

t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

55

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ

t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

56

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

57

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P

ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

58

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ

ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

59

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ

ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ
and for all j < i , ρ|j |= ϕ

60

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Semantics

State Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= E ϕ ⇔ ∃ρ ∈ Paths(t). ρ |= ϕ
t |= A ϕ ⇔ ∀ρ ∈ Paths(t). ρ |= ϕ

Path Semantics

ρ |= P ⇔ ρ0 |= P
ρ |= ϕ ∧ ψ ⇔ ρ |= ϕ and ρ |= ψ
ρ |= ¬ϕ ⇔ ρ 6|= ϕ
ρ |= X ϕ ⇔ ρ|1 |= ϕ
ρ |= ϕ UNTIL ψ ⇔ There exists an i such that ρ|i |= ψ

and for all j < i , ρ|j |= ϕ

61

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?

62

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?

63

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?

64

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

CTL* Examples

We say a Kripke structure A satisfies a CTL* property P, that is,
A |= P iff Tree(A) |= P
Given this automaton A:

q0 q1

q2

A |= E G F •?

A |= A G F •?

A |= A F •?

A |= A E F •?

65

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simplifying

CTL* is very expressive but very complicated.

It’s also extremely hard to model check, which we’ll get to later.

CTL* to CTL

Keep state formulae the same:

All p ∈ P are SFs.

Given SFs P and Q, ¬P is a SF and P ∧ Q is a SF.

Given a PF ϕ, Eϕ and Aϕ are SFs.

But we force path formulae to go straight back to state formulae
immediately with a temporal operator:

Given a SF P then XP is a PF.

Given SFs P and Q, P UNTIL Q is a PF.

66

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Examples

Which of the following CTL* formulae are CTL formulae?

a UNTIL (b UNTIL c)

A (a UNTIL c)

X X a

X A a

A (a UNTIL (b UNTIL c))

A E (a UNTIL b)

E X a

X E a

67

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Non-mutual CTL Syntax

Simpler CTL Syntax

A CTL formula is defined as follows:

All p ∈ P are formulae.

Given formulae P and Q, ¬P is a formula and P ∧ Q is a
formula.

Given a formula P, EX P and AX P are formulae.

Given formulae P and Q, E(P UNTIL Q) and
A(P UNTIL Q) are formulae.

68

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)

t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P

69

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P

t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P

70

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P

t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P

71

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P

t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:
ρi |= Q and ∀j < i . ρj |= P

t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:
ρi |= Q and ∀j < i . ρj |= P

72

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P

t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:
ρi |= Q and ∀j < i . ρj |= P

73

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Simpler CTL Semantics

Semantics are as with CTL*, but can be defined more directly:

Semantics

t |= p ⇔ p ∈ L(troot)
t |= P ∧ Q ⇔ t |= P and t |= Q
t |= ¬P ⇔ t 6|= P
t |= EX P ⇔ ∃ρ ∈ Paths(t). ρ1 |= P
t |= AX P ⇔ ∀ρ ∈ Paths(t). ρ1 |= P
t |= A(P UNTIL Q) ⇔ ∀ρ ∈ Paths(t), there ∃ an i such that:

ρi |= Q and ∀j < i . ρj |= P
t |= E(P UNTIL Q) ⇔ ∃ρ ∈ Paths(t) and an i such that:

ρi |= Q and ∀j < i . ρj |= P

74

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define EF•:

E(True UNTIL •)

75

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define EF•:

E(True UNTIL •)

76

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define EG•:

¬A(True UNTIL ¬•)

77

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define EG•:

¬A(True UNTIL ¬•)

78

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define AF•:

A(True UNTIL •)

79

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define AF•:

A(True UNTIL •)

80

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define AG•:

¬EF ¬•

81

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Derived Operators

Define AG•:

¬EF ¬•
82

Reachability and Safety Trace Semantics and LTL Tree Semantics and CTL* CTL

Bibliography

Huth/Ryan: Logic in Computer Science, Section 3.2 and 3.4

Bayer/Katoen: Principles of Model Checking Sections 5.1 and
6.2

83

	Reachability and Safety
	Trace Semantics and LTL
	Tree Semantics and CTL*
	CTL

